Product Description
Product details
|
Product Name: Made in China ISO9001 Certificate |
Comparision
Parameter
| MODEL | MAXIMUM WORKING PRESSURE | FREE AIR DELIVERY* OF UNIT AT WORKING PRESSURE | MOTOR | NOISE LEVEL | AIR OUTLET DISCHARGE SIZE | WEIGHT | DIMENSIONS | ||||
| Bar | PSI | l/s | m3/min | CFM | kW | HP | dBA | (mm) | KG | (mm) | |
| MCS-5.5 | 7 | 102 | 14 | 0.85 | 30 | 5.5 | 7.5 | 65±2 | G3/4 | 240 | 800 x 720 x 950 |
| 8 | 116 | 13 | 0.78 | 28 | |||||||
| 9 | 145 | 11 | 0.65 | 23 | |||||||
| 10 | 174 | 9 | 0.55 | 20 | |||||||
| MCS-7.5 | 7 | 102 | 20 | 1.2 | 43 | 7.5 | 10 | 65±2 | G3/4 | 250 | 800 x 720 x 950 |
| 8 | 116 | 18 | 1.1 | 39 | |||||||
| 9 | 145 | 15 | 0.9 | 32 | |||||||
| 10 | 174 | 13 | 0.75 | 27 | |||||||
| MCS-11 | 7 | 102 | 28 | 1.65 | 59 | 11 | 15 | 70±2 | G3/4 | 350 | 950 x 800 x1160 |
| 8 | 116 | 25 | 1.5 | 54 | |||||||
| 9 | 145 | 22 | 1.3 | 46 | |||||||
| 10 | 174 | 18 | 1.1 | 39 | |||||||
| MSC-15 | 7 | 102 | 42 | 2.5 | 89 | 15 | 20 | 70±2 | G3/4 | 400 | 1150x 900 x1380 |
| 8 | 116 | 38 | 2.3 | 82 | |||||||
| 10 | 145 | 35 | 2.1 | 75 | |||||||
| 12 | 174 | 32 | 1.9 | 68 | |||||||
| MCS-18.5 | 7 | 102 | 53 | 1.1 | 114 | 18.5 | 25 | 72±2 | G1 | 550 | 1150 x 900 x1380 |
| 8 | 116 | 50 | 2.5 | 107 | |||||||
| 10 | 145 | 45 | 2.3 | 96 | |||||||
| 12 | 174 | 40 | 21 | 86 | |||||||
| MCS-22 | 7 | 102 | 63 | 3.8 | 136 | 22 | 30 | 73±2 | G1 | 600 | 1150 x 900 x1380 |
| 8 | 116 | 60 | 3.6 | 129 | |||||||
| 10 | 145 | 53 | 3.2 | 114 | |||||||
| 12 | 174 | 45 | 2.7 | 96 | |||||||
| MCS-30 | 7 | 102 | 88 | 5.3 | 189 | 30 | 40 | 74±2 | G1 | 650 | 1150 x 900 x1380 |
| 8 | 116 | 83 | 5 | 179 | |||||||
| 10 | 145 | 75 | 4.5 | 161 | |||||||
| 12 | 174 | 67 | 4 | 143 | |||||||
| MCS-37 | 7 | 102 | 113 | 6.8 | 243 | 37 | 50 | 74±2 | G11/2 | 800 | 1320 x 1000 x1500 |
| 8 | 116 | 103 | 6.2 | 221 | |||||||
| 10 | 145 | 93 | 5.6 | 200 | |||||||
| 12 | 174 | 83 | 5 | 179 | |||||||
| MCS-45 | 7 | 102 | 123 | 7.4 | 264 | 45 | 60 | 74±2 | G11/2 | 900 | 1320 x 1000 x1840 |
| 8 | 116 | 117 | 7 | 250 | |||||||
| 10 | 145 | 103 | 6.2 | 221 | |||||||
| 12 | 174 | 93 | 5.6 | 200 | |||||||
| MCS-55 | 7 | 102 | 167 | 10 | 357 | 55 | 75 | 75±2 | G2 | 1300 | 1600 x 1470 x1460 |
| 8 | 116 | 153 | 9.2 | 329 | |||||||
| 10 | 145 | 142 | 8.5 | 304 | |||||||
| 12 | 174 | 127 | 7.6 | 271 | |||||||
| MCS-75 | 7 | 102 | 223 | 13.4 | 479 | 75 | 100 | 75±2 | G2 | 1500 | 1800x 1250 x1670 |
| 8 | 116 | 210 | 12.6 | 450 | |||||||
| 10 | 145 | 187 | 11.2 | 400 | |||||||
| 12 | 174 | 167 | 10 | 357 | |||||||
| MCS-90 | 7 | 102 | 268 | 16.1 | 575 | 90 | 120 | 75±2 | G2 | 1700 | 1800 x 1250 x1670 |
| 8 | 116 | 250 | 15 | 536 | |||||||
| 10 | 145 | 230 | 13.8 | 493 | |||||||
| 12 | 174 | 210 | 12.6 | 450 | |||||||
advantages
|
1. Easy for Maintenance, Low cost for Maintenance All the pipe and spare parts is standardized, they can be changed fast. 2. 6000sets capacity for each month. As 1 of the largest Air compressor Manufacture, with Advanced Automatic Production Line, 6000set air compressor can be produced for each month. The production cost is greatly reduced by the production scale production. Providing the most cost-effective product for you. 3. Rich experience in compressed air system solution, 1 stop service and provide air compressor system design We can provide one- stop solution. We can not only provide the air compressor, but also high quality air treatment equipment, such as air tank, air dryer, air filter, air pipe, valves and air compressor spare parts. Save your time and cost greatly. 4. Strong R&D Capability Annual Increasing R&D investment. Introduce German GU technology and the Japanese technology. Long- term collaborative project with HangZhou Jiaotong University. |
Application
Sales Service
Professional online consultant to solve your question about compressor system.
√ Free site design consultant, and energy saving solution to help you save operation cost.
√ Negotiable technician available to service machinery overseas.
√ Online professional after-service until solve the problem.
√ 1 year warranty after commissioning or 16 months against shipping date, it depends on which 1 come firstly for the whole
machine(except maintenance consumable).
√ A sufficient number of spare parts are available, make sure the good after service.
Certificate
About mikovs
|
Mikovs Compressor
|
RFQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor more than 8 years.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.Worldwid agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance,
and consider the actual environment.
Q8. How do you control quality ?
A: 1.Raw- material in checking.
2.Assembly.
3.Worldwid after service available.arrange our engineers to help you training and installation.
Q9. Do you offer OEM service ?
A: Yes.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-05-17
China Hot selling Germany Technology Industrial Silent Electrical Portable 5.5 Kw 7.5kw 11kw 15kw Rotary Screw Air Compressor with Dryer Tank and Filter air compressor for car
Product Description
Germany Technology Industrial Silent Electrical Portable 5.5 kw 7.5kw 11kw 15kw Rotary Screw Air Compressor with Dryer Tank and Filter
Product Introduction
CHINAMFG asynchronous coaxial CHINAMFG integrated direct-connected screw air compressor has the following advantages in addition to the advantages of ordinary screw compressors such as energy saving and quietness:
1. High transmission efficiency
The efficiency of belt drive is generally 0.94-0.96, and the efficiency of direct drive is above 0.99, while the motor and compression main engine of the integrated screw machine adopt an embedded integrated shaft structure, there is no mechanical friction loss and movement loss, and the transmission rate is 100 %.
2. Low maintenance cost
The one-piece screw machine rotor and motor are integrated into a shaft structure, and there is no bearing at the motor end, which eliminates the fault point of the motor bearing and avoids the trouble of regular maintenance of ordinary direct-line bearings, oil seals, couplings or regular adjustment and replacement of belt conveyor belts. Improve the efficiency of maintenance and reduce maintenance costs.
3. Compact structure
The overall size of the integrated screw machine motor is small, about 1/3 of the ordinary motor, and the motor and the main machine are directly connected by an integral shaft without intermediate transition coupling flange, so the overall size of the machine is small, which is convenient for disassembly and assembly. The overall size of the machine is also reduced, about 2/3 of the ordinary direct-connected screw machine of the same power, and the space required for the installation of the screw machine is less.
Product Parameters
| Model : | HW-7T rotary screw air compressor with tank ,dryer and filters |
| Type: | Energy Saving Air Compressor |
| Voltage: | 380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements |
| Working Pressure: | 7~12.5 bar |
| Installed Motor Power: | 7.5kw |
| Capacity: | 1.1-0.8m3/min |
| Color: | Blue or gery |
| Driven Method: | Direct drive |
| Air End: | Original Ally-win Air End from Germany |
| Trademark: | Hengchaowin |
| Transport Package: | Standard Wooden Packing |
| Available Certificate: | CE, ISO, UL, ASME, GHOST |
| Origin: | ZheJiang , China |
| application: | Casting , Metal , Plastic , Rubber |
Detailed Photos
Advantage:
1.permanent magnet motor.
Exceed IE3 standards
IP54 or IP55 protecting grad
Variable speed drive
2.Germany technology air end
R&D in Germany GU or CHINAMFG brand air end
designed for 10 years +of reliable operation
3.Inlet valve
same desige as CHINAMFG Rand
No blow-off losses/large suction are
Full aluminum design,maintenance-free
4.oil gas tank & built in separation system.
Oversized air end oil tank with sight glass
The high efficiency oil seperator ensures that the oil carry over in less than 3ppm.
System pressure loss,less than 0.02mpa.
5.Polt touch controller
HD color touch LCD screen
Operation record/chart display
Weekly timer/service history and plHangZhou
Real-time operation/maintenance/alarm information
6.Innovative vectorial inverter
CE,UL,CUL,ROSH certification
Independent cooling air duct design
Robust enclosure for trouble-free operation in the harshest conditions.
Specification
| Model Modelo |
HW-7T | HW-11T | HW-15T | HW-22T | HWV-30A | HWV-37A | ||||||||||||||||||
| air flow flujo de aire |
Lliter/min | 1 | 0.9 | 0.8 | 1.5 | 1.3 | 1.1 | 0.8 | 2.4 | 2.1 | 1.5 | 1 | 3.5 | 3.1 | 2.7 | 1.7 | 4.3 | 3.6 | 2.4 | 2.9 | 5.8 | 5.2 | 2.8 | 3.2 |
| 35 | 31 | 28 | 52 | 46 | 39 | 28 | 74 | 74 | 52 | 35 | 124 | 109 | 95 | 35 | 151 | 127 | 74 | 102 | 205 | 183 | 98 | 112 | ||
| working pressure presión laboral |
bar(kg) | 8 | 10 | 12.5 | 8 | 10 | 12.5 | 15 | 8 | 10 | 12.5 | 15 | 8 | 10 | 12.5 | 15 | 10 | 12.5 | 15 | 20 | 10 | 12.5 | 15 | 20 |
| psi | 116 | 145 | 174 | 116 | 145 | 174 | 217 | 116 | 145 | 174 | 217 | 116 | 145 | 174 | 217 | 145 | 174 | 217 | 290 | 145 | 174 | 217 | 290 | |
| power poder |
KW / HP | 7.5kw/ 10hp |
11kw/ 15hp |
15kw/ 20hp |
22kw/ 30hp |
30kw/ 40hp |
37kw/ 50hp |
|||||||||||||||||
| noise | db(A) | 62±2 | 66±2 | 66±2 | 68±2 | 68±2 | 72±2 | |||||||||||||||||
| Caliber | inch | RP 1/2 | RP 1/2 | RP 1/2 | RP 1/2 | RP 1 | RP1 1/2 | |||||||||||||||||
| Voltage/Frequency | AC 380v/415v/220v/480v or 50hz/60hz accpet Customized voltage | |||||||||||||||||||||||
| Starting mode Modo de inicio |
variable frequency start inicio de frecuencia variable |
|||||||||||||||||||||||
| air dryer secador |
m³/min | 1.5 | 1.5 | 2.5 | 3.8 | / | / | |||||||||||||||||
| line filter filtro de línea |
m³/min | 1.5 | 1.5 | 2.5 | 3.8 | / | / | |||||||||||||||||
| air tank tanque de aire |
liter | 300 | 400 | 400 | 600 | / | / | |||||||||||||||||
| Shape dimension (mm) |
L | 1700 | 1180 | 1180 | 1600 | 1300 | 1450 | |||||||||||||||||
| W | 800 | 800 | 800 | 110 | 910 | 910 | ||||||||||||||||||
| H | 1689 | 1210 | 1210 | 1290 | 1290 | 1290 | ||||||||||||||||||
| Weight | KG | 500 | 600 | 650 | 700 | 520 | 720 | |||||||||||||||||
Why Choose Us
HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.
After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.
Customer feedback
Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality.
Packaging
The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
Application
FAQ
Q1: How long could your air compressor be used?
O: Generally, more than 10 years
Q2: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information
Q3: How about your customer service?
O: 24 hours on-line service available
Q4: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Support Online and Local Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | No |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-05-16
China OEM Electric Belt Driven Rotary Screw Air Compressor for Industrial (11-45kw) arb air compressor
Product Description
Electric Belt Driven Rotary Screw Air Compressor for Industrial (11-45kw)
Feature
1.Steam turbine compressor are driven by power supply from an industrial compressor,compress the air in an compressing cavity and then pressurize the compressed air.
2.Air compressor ,A precisely-made central bracket is used ti keep the motor aligned permanently with the air end.
3. A high resilient coupling is adopted to make the air compressor operate smoothly,and the elastomer is long in useful life.
4.The discharge pipe is double-wall corrugated pipe and the oil way uses a special high pressure hose which is resistant to temperature up to 125ºC.
5.Saving energy and protecting environment.
6.Stable quality and high durability.
Rotary Screw Air Compressor
1. Belt driven double screw air compressor series
2. Direct driven double screw air compressor series
3. Variable-frequency screw air compressor series
4. Combined screw air compressor series
5. Low pressure screw air compressor series
6. Oil-free screw air compressor series
7. Heat recovery screw air compressor series
8. Special tunnel screw air compressor series
9. Steam turbine screw air compressor series
10. Diesel portable screw air compressor series
11. Electric portable screw air compressor series
12. Low noise screw air compressor series
13. Scroll screw air compressor series
14. Large displacement screw air compressor series
15. Centrifugal screw air compressor series
electric and portable screw air compressor Compatible After-Treatment System
1. Low pressure air tank
2. High pressure air tank
3. Pre-cooler
4. After-cooler
5. Oil-water Separator
6. Pre-filter
7. High temperature refrigerating dryer
8. Precision filter
9. Active carbonate filter
10. Super precision filter
Specification
| Model | YD-ERC10SA | YD-ERC20SA | YD-ERC30SA |
| Type of cooling | water-cooling | ||
| Air delivery/ working pressure (m³/ bar) |
1.0/8 | 2.2/8 | 3.6/8 |
| 0.85/10 | 2.1/10 | 3.2/10 | |
| 0.7/12.5 | 1.8/12.5 | 2.5/12.5 | |
| Compressor Power (kw) | 7.5 | 15 | 22 |
| Precision filter model | END012 | END571 | END038 |
| Weight(kg) | 680 | 810 | 930 |
| Cooling air volume(m3/min) |
32.5 | 50 | 110 |
| Pipe connection size | 3/4″ | 1″ | 11/2″ |
Compressor in customers factory /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-05-15
China Hot selling Oil Free 37kw Pm Screw Air Compressor for Food &Medicine supplier
Product Description
06HP 37kw Direct Driven VSD Stationary Screw Air Compressor with Low Noise
Water lubricated oil free compressor-technical parameters:
| Model | Work pressure | Capacity | Power | Noise | Inlet and outlet diameters of cooling water | Water inlet & outlet T/H |
Lubricating water L |
Dimensions | Weight | Air outlet diameter
|
| WZS-06PMA | 8.5 | 0.3~0.78 | 5.5 | 57 | 3/4″ | 1.5 | 10 | 800x800x1100 | 460 | 3/4″ |
| 10.5 | 0.2~0.65 | |||||||||
| WZS-08PMA | 8.5 | 0.35~1.17 | 7.5 | 57 | 3/4″ | 2 | 10 | 800x800x1100 | 510 | 3/4″ |
| 10.5 | 0.3~1.05 | |||||||||
| 12.5 | 0.24~0.81 | |||||||||
| WZS-11PMA | 8.5 | 0.54~1.72 | 11 | 60 | 1″ | 2.5 | 26 | 1200x800x1300 | 620 | 3/4″ |
| 10.5 | 0.45~1.42 | |||||||||
| 12.5 | 0.35~1.10 | |||||||||
| WZS-15PMA | 8.5 | 0.75~2.43 | 15 | 60 | 1″ | 3.5 | 26 | 1200x800x1300 | 670 | 1″ |
| 10.5 | 0.65~2.17 | |||||||||
| 12.5 | 0.6~1.85 | |||||||||
| WZS-18PMA | 8.5 | 0.9~3.13 | 18.5 | 63 | 1″ | 4 | 30 | 1400x1000x1520 | 730 | 1″ |
| 10.5 | 0.9~2.82 | |||||||||
| 12.5 | 0.6~2.05 | |||||||||
| WZS-22PMA | 8.5 | 1.1~3.62 | 22 | 63 | 1 1/2″ | 5 | 30 | 1400x1000x1520 | 780 | 1″ |
| 10.5 | 0.97~3.21 | |||||||||
| 12.5 | 0.85~2.78 | |||||||||
| WZS-30PMA | 8.5 | 1.55~5.12 | 30 | 66 | 1 1/2″ | 7 | 40 | 1500x1150x1500 | 1150 | 1 1/2″ |
| 10.5 | 1.255~4.43 | |||||||||
| 12.5 | 1.1~3.63 | |||||||||
| WZS-37PMA | 8.5 | 1.91~6.30 | 37 | 66 | 1 1/2″ | 9 | 40 | 1500x1150x1500 | 1200 | 1 1/2″ |
| 10.5 | 1.60~5.33 | |||||||||
| 12.5 | 1.42~4.77 | |||||||||
| WZS-45PMA | 8.5 | 2.50~8.30 | 45 | 68 | 1 1/2″ | 10 | 90 | 1800x1300x1750 | 1490 | 2″ |
| 10.5 | 1.91~6.30 | |||||||||
| 12.5 | 1.70~5.56 | |||||||||
| WZS-55PMA | 8.5 | 3.0~9.76 | 55 | 69 | 1 1/2″ | 12 | 100 | 1800x1300x1750 | 1570 | 2″ |
| 10.5 | 2.60~8.55 | |||||||||
| 12.5 | 2.30~7.67 | |||||||||
| WZS-75PMA | 8.5 | 3.95~13.00 | 75 | 72 | 1 1/2″ | 18 | 100 | 1800x1300x1750 | 1750 | 2″ |
| 10.5 | 3.40~11.50 | |||||||||
| 12.5 | 3.0~9.70 | |||||||||
| WZS-90PMA | 8.5 | 5.0~16.60 | 90 | 73 | 1 1/2″ | 20 | 120 | 2200x1550x1800 | 2450 | 2 1/2″ |
| 10.5 | 4.30~14.66 | |||||||||
| 12.5 | 3.72~12.60 | |||||||||
| WZS-110PMA | 8.5 | 6.0~19.97 | 110 | 77 | 1 1/2″ | 24 | 120 | 2200x1550x1800 | 2580 | 2 1/2″ |
| 10.5 | 5.0~16.66 | |||||||||
| 12.5 | 4.65~15.56 | |||||||||
| WZS-132PMA | 8.5 | 6.75~22.52 | 132 | 77 | 2″ | 30 | 120 | 2200x1550x1800 | 2700 | 2 1/2″ |
| 10.5 | 6.0~19.97 | |||||||||
| 12.5 | 5.07~16.90 | |||||||||
| WZS-160PMA | 8.5 | 8.5~28.11 | 160 | 79 | 3″ | 35 | 160 | 3000x1800x2100 | 3900 | 3″ |
| 10.5 | 706~25.45 | |||||||||
| 12.5 | 6.7~22.52 | |||||||||
| WZS-185PMA | 8.5 | 10~33.97 | 185 | 79 | 3″ | 38 | 160 | 3000x1800x2100 | 4050 | 3″ |
| 10.5 | 8.72~29.00 | |||||||||
| 12.5 | 7075~25.210 | |||||||||
| WZS-200PMA | 8.5 | 11.2~36.75 | 200 | 80 | 4″ | 42 | 200 | 3100x1850x2100 | 4200 | 4″ |
| 10.5 | 9.68~32.78 | |||||||||
| 12.5 | 9.2~29.24 | |||||||||
| WZS-220PMA | 8.5 | 12.2~39.67 | 220 | 80 | 4″ | 47 | 200 | 3100x1850x2100 | 4400 | 4″ |
| 10.5 | 11.2~36.75 | |||||||||
| 12.5 | 9.0~29.63 | |||||||||
| WZS-250PMA | 8.5 | 13.5~44.78 | 250 | 80 | 4″ | 53 | 200 | 3100x1850x2100 | 4800 | 4″ |
| 10.5 | 12.3~39.67 | |||||||||
| 12.5 | 10.2~33.97 |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts: Pasha Teng
Mob: -173-1757-2798 /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-05-15
China supplier Made in China CHINAMFG Bk22kw-10bar Electric Rotary Screw Air Compressor mini air compressor
Product Description
BK series new screw air compressor new-generation low-consumption and high-efficiency motor;Large starting torque, insulation class F, protection class IP54;SKF bearings, low noise and long life;With a refueling device, it can be refueled without stopping.
Product Description
Yin-Yang Rotor Compression System
Better sealing, smaller leakage channel will produce high-efficiency roller sliding film to reduce heat of compression, and gas production is improved by 10%-15%
Built-in oil and gas separation design
Adopt a built-in oil separation setting to ensure the oil and gas separation effect and reduce fuel consumption
·High filtration level and low flow resistance
·Good noise reduction and mute effect
· Oil and gas separation, high-temperature resistance, high-pressure resistance – reduce the oil content of the exhaust
·Clean exhaust to ensure clean gas
Timely Smart Control Panel
·Using a user-friendly interface to prompt operation, clear at a glance, real-time monitoring of information, providing important information alarm, storage, and query functions
Precision oil filter
·Use high-density filter paper to filter oil
· Completely filter out lubricating oil
Low-consumption and high-efficiency motor, large starting torque
·Insulation class F, protection class IP23.
·Built-in refueling device, can refuel without stopping.
Cooling copper pipe
The radiator made of high-quality copper tubes can make the heat generated by the condensation of the machine quickly Dissipate, maintain the internal temperature
oil pipeline
·Excellent material
·Stable oil delivery without clogging
The system adopts the step-less adjustment of the displacement of 0-100. When the air consumption is reduced, the exhaust volume is also reduced, and the current of the motor is also reduced at the same time; when the air is not used, the air compressor runs empty, and the air compressor is automatically stopped for a long time. When the gas consumption increases, resume the heavy vehicle. Excellent energy-saving effect.
good environmental adaptability
The extraordinary cooling system design is especially suitable for Asia’s high temperature and high humidity environments. The excellent vibration isolation technology and noise reduction measures make the installation of CHINAMFG screw air compressors not require special foundations. As long as a small space for ventilation and maintenance is left, your compressor can be installed well.
Design features of screw rotor profile:
1. Fully realize “surface-to-surface” meshing, thereby helping to form a hydrodynamic lubricating film, reducing lateral leakage through the contact belt, improving compressor efficiency; and improving rotor processing and inspection performance.
2. Adopt the design idea of “large rotor, large bearing, low speed”, the speed is 3050 lower than other brands, which can reduce noise and vibration, reduce exhaust temperature, improve rotor rigidity, prolong service life, and reduce the carbonization of impurities and oil animal sensitivity.
3. The power range is 4355KW, of which 18.5250KW are directly connected without a gearbox, 200KW and 250KW are directly connected with 4-pole motors, and the speed is as low as
Product Parameters
|
Screw group |
5: 6 Gear rotor |
|
|
Compression method |
Continuous, CHINAMFG |
|
|
Compressed air outlet pressure |
10MPa |
|
|
Compressed air outlet temperature |
Air-cooled |
|
|
Compressed air outlet temperature |
10ºC~15ºC higher than the ambient temperature |
|
|
Volume of Lubricating Oil |
About 7.5 liters |
|
|
Motor speed |
N=2930r/min |
|
|
Rated power |
22kw |
|
|
Displacement |
1.3MPa |
3.6m³/min |
|
Weight |
540kg |
|
|
Upper air temperature |
45ºC |
|
|
Lower limit of air temperature |
0ºC |
|
|
Fuel consumption |
Exhaust oil content is less than 3PPM |
|
|
Noise level |
72dB(A) |
|
|
Dimensions (length×width×height) (mm) |
1200x800x1120 |
|
|
Model |
Working Pressure |
Capacity |
Motor Power |
Connector |
Weight |
Noise |
Dimension |
|
Bar |
m³/min |
kw |
kg |
dB(A) |
mm |
||
|
BMVF7.5G |
0.65-1.0 |
1.0-1.25 |
7.5 |
G3/4 |
200 |
72 |
800*510*800 |
| BMVF11G |
0.65-1.0 |
1.5-1.85 |
11 |
G1
|
260 |
73 |
1000*670*1090 |
| BMVF15G | 0.65-1.0 |
2.05-2.35 |
15 |
280 |
73 |
1000*670*1090 |
|
|
BMVF22G |
0.65-1.0 |
2.95-3.95 |
22 |
390 |
74 |
1200*800*1120 |
|
| BMVF37G | 0.65-1.0 |
5.05-6.35 |
37 |
600 |
76 |
1340*850*1300 |
|
|
BMVF45G |
0.65-1.0 |
6.45-8.2 |
45 |
800 |
78 |
1480*1030*1365 |
|
| BMVF55G | 0.65-1.0 |
8.2-9.85 |
55 |
810 |
80 |
||
| BMVF75 | 0.65-1.0 |
10.5-13.1 |
75 |
G2 |
1280 |
81 |
1800*1190*1710 |
| BMVF90 | 0.65-1.0 |
12.5-15.5 |
90 |
1300 |
81 |
||
| BMVF110 | 0.65-0.8 |
22 |
110 |
DN65 |
1850 |
82 |
2700*1230*1730 |
| BMVF132 | 0.65-0.8 |
24 |
132 |
2270 |
82 |
| Model | Working Pressure | Displacement | Motor Power | Exhaust interface | Weight | Noise | Dimension |
| Bar | m3/min | kw | kg | dB(A) | mm | ||
| BK7.5-8G | 8 | 1.2 | 7.5 | G1 | 200 | 70 | 800*620*800 |
| BK7.5-10 | 10 | 1 | 7.5 | G3/4 | 200 | 72 | 720*700*1000 |
| BK7.5-13 | 13 | 0.8 | 7.5 | G3/4 | 200 | 72 | 720*700*1000 |
| BK11-8G | 8 | 1.7 | 11 | G1 | 300 | 72 | 1000*670*1090 |
| BK11-10 | 10 | 1.5 | 11 | G1 | 290 | 72 | 700*670*1250 |
| BK11-13 | 13 | 1.2 | 11 | G1 | 290 | 72 | 700*670*1250 |
| BK15-8G | 8 | 2.4 | 15 | G1 | 280 | 73 | 1000*670*1090 |
| BK15-10 | 10 | 2.2 | 15 | G1 | 290 | 73 | 700*670*1250 |
| BK15-13 | 13 | 1.7 | 15 | G1 | 290 | 73 | 700*670*1250 |
| BK18-8 | 8 | 3 | 18.5 | G1 | 500 | 74 | 1080*880*1235 |
| BK18-10 | 10 | 2.7 | 18.5 | G1 | 500 | 74 | 1080*880*1235 |
| BK18-13 | 13 | 2.3 | 18.5 | G1 | 500 | 74 | 1080*880*1235 |
| BK22-8ZG | 8 | 3.6 | 22 | G1 | 380 | 74 | 1200*800*1100 |
| BK22-10 | 10 | 3.2 | 22 | G1 | 540 | 74 | 1080*880*1235 |
| BK22-13 | 13 | 2.7 | 22 | G1 | 540 | 74 | 1080*880*1235 |
| BK30-8 | 8 | 5 | 30 | G1 1/2 | 650 | 75 | 1120*930*1290 |
| BK30-10 | 10 | 4.4 | 30 | G1 1/2 | 650 | 75 | 1120*930*1290 |
| BK30-13 | 13 | 3.6 | 30 | G1 1/2 | 650 | 75 | 1120*930*1290 |
| BK37-8ZG | 8 | 6 | 37 | G1 1/2 | 740 | 76 | 1530*900*1230 |
| BK37-10 | 10 | 5.5 | 37 | G1 1/2 | 730 | 76 | 1240*1030*1435 |
| BK37-13 | 13 | 4.6 | 37 | G1 1/2 | 730 | 76 | 1240*1030*1435 |
| BK45-8G | 8 | 7.1 | 45 | G1 1/2 | 800 | 78 | 1480*1030*1345 |
| BK45-10 | 10 | 6.5 | 45 | G1 1/2 | 820 | 78 | 1240*1030*1595 |
| BK45-13 | 13 | 5.6 | 45 | G1 1/2 | 820 | 78 | 1240*1030*1595 |
| BK55-8G | 8 | 10 | 55 | G1 1/2 | 800 | 80 | 1480*1030*1345 |
| BK55-10 | 10 | 8.5 | 55 | G1 1/2 | 1200 | 80 | 1545*1200*1470 |
| BK55-13 | 13 | 7.4 | 55 | G1 1/2 | 1200 | 80 | 1545*1200*1470 |
Detailed Photos
Built-in oil separation system The built-in oil separation design ensures the separation of oil and gas and reduces fuel consumption.
Certified Genuine Parts. CHINAMFG Certified Genuine Parts to ensure the compressors delivered to you always perform at high performance.
Adhering to the basic belief in environmental sustainability, we have been committed to continuously improving the energy efficiency of our products and creating value for users.
Energy saving and economical, reliable and durable, environmentally friendly and quiet.
The Latest-Generation High Efficiency Screw Rotor! “Large Rotor, Low Speed”, Direct Drive
The latest generation of high-efficiency rotor profiles, full-spectrum screw mainframe meets the national energy-saving standards.
Application
Electric power, petroleum, auto repair, laser equipment, metallurgy, biopharmaceutical, printing, garment industry
Company Profile
FAQ
1.How do your prices compare to the manufacturer/factory?
We are the main distributor of major construction machinery manufacturers/factories in China and keep getting the best dealer prices. From the comparison and feedback from many customers, our price is even more competitive than the factory/factory price.
2.How is the delivery time?
In general, we can deliver ordinary machines immediately to our customers within 7 days, as we have various resources to inspect stock machines, locally and nationwide, and receive machines in a timely manner. But it takes more than 30 days for a manufacturer/factory to produce an order machine.
3.How often can you respond to customer inquiries?
Our team is made up of a group of hardworking and dynamic people who work around the clock to respond to customer inquiries and questions. Most issues can be successfully resolved within 8 hours, while manufacturers/factories take longer to respond.
4.Which payment methods can you accept?
Usually we can use wire transfer or letter of credit, and sometimes DP. (1) Wire transfer, 30% deposit in advance, 70% balance paid before shipment, long-term cooperation customers can present a copy of the original bill of lading. (2) Letter of credit, 100% irrevocable letter of credit without “soft terms” from internationally recognized banks can be accepted. Please seek advice from the sales manager you work with.
5.Which clauses in the Incoterms 2571 can you use?
We are a professional and mature international player and can handle all INCOTERMS 2571, we usually work on regular terms like FOB, CFR, CIF, CIP, DAP.
6.How long are your prices valid?
We are a gentle and friendly supplier, never greedy for profit. Our prices remain largely stable throughout the year. We will only adjust the price according to the following 2 situations: (1) USD exchange rate: According to the international currency exchange rate, the RMB exchange rate is quite different; (2) The manufacturer/factory adjusted the machine price due to the increase of labor cost or raw material cost.
7.What logistics methods can you use for shipping?
We can transport construction machinery with various means of transport. (1) 80% of our shipping will be by the sea, to all major continents such as Africa, South America, Middle East. (2) China’s inland neighboring countries, such as Russia, Mongolia, Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan, Turkmenistan, etc., can transport by road or rail. (3) For urgently needed light spare parts, we can provide international express services, such as DHL, TNT, UPS, FedEx, etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Warranty Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 1450/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-05-14
China Standard Chinese Professional Factory 75 HP / 55 Kw 10 Bar Direct Driven Screw Air Compressor air compressor parts
Product Description
Chinese professional factory 75 hp / 55 kw 10 bar Direct Driven Screw Air Compressor
Main Features:
1. The flexible belt will be automatically tensioned in use. Through adjusting the tension, minimize the loss of pressure and power, to enhance the efficiency of compression.
2. Using the precise spin-oil separator and special two-pole buffer separation, it can minimize the oil consumption, guarantee the outlet gas purity, and extend the lifetime of filter elements.
3. With the toothed V-belt, it has good heat dissipation, long life, higher gear drive and transmission efficiency, as high as over 98%.
Oil Filter: Good Quality filters ensure longer working life and save the maintenance time and cost.
Stainless Steel Hoses: High and low temperature resistant, high pressure resistant.
Compressed Air Vessel: Reduction of pressure drops and energy costs, quality air with low oil content.
Air End: Imported DLOL air end, advanced profile design.
Electric Motor: Premium efficiency Totally TEFC IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.
Air Filter: Two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environment.
Cooler: High quality aluminum material, alternating expression cooler fins, ensure the perfect radiating effect.
Technical parameters:
Our workshop:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-05-14
China factory Air Purification System Heavy Duty Gear Driven Rotary Single Screw Air Compressor Compressor Price air compressor price
Product Description
1. Description
Our CHINAMFG variable speed compressor series allows you to drastically reduce your operating costs when your compressed air system is not working at full capacity all day long.
Basically the inverter reduces the motor speed to match your air consumption, and as a result, you save energy and money. The PMVSD technology is great as a stand-alone machine or networked to a load-unload Mikovs compressor where it can function as a master and regulate the air delivery for the whole site.
2. Detail Structure for the Screw Compressor
1) Superior Air Filter
•Superior air filter with two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environments.
•Extends the service life of the compressor parts and components, ensures high air quality.
2) Premium Efficiency Drive Motor
•Premium efficiency Totally Enclosed Fan Cooled IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.
•Long-term stable operation even in harsh environments up to 55ºC (131ºF)
3) Smart Controller
•Increased reliability: durable keyboard, user-friendly, multilingual user interface.
•Improved ease of use: intuitive navigation system with main operation conditions include warning indications, maintenance scheduling etc
4) Intelligent Control and Protection
•Schneider electrical elements with original package from Germany, safe and reliable
•Reasonable, simple and clear wiring, easy for maintenance
•Good protection function ensures the stable running of the compressor unit
5) Heavy-duty Oil Filter
•Heavy-duty oil filter with excellent oil purification capability ensures a clean and safe oil system
•Long service period and easy filter change reduce maintenance costs
6) Stainless Steel Oil Pipe & Air Pipe system
•Stainless steel High temperature resistant (45712006
Web: mikovs
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
What are the safety considerations when operating an air compressor?
Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:
1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.
2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.
3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.
4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.
5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.
6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.
7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.
8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.
9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.
10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.
By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.


editor by CX 2024-05-08
China OEM 37kw 50HP VSD Industrial Electric Rotary Variable Speed Screw Air Compressor air compressor CHINAMFG freight
Product Description
Product Description
Product Parameters
| Model | Motor Power | Maximum Working Pressure | Free Air Delivery | Air Outlet Pipe Diameter | Weight | Dimensions(L*W*H) | |||
| kW | hp | bar(g) | psig | m³/min | cfm | kg | mm | ||
| BG10APM | 7.5 | 10 | 8 | 116 | 1.1 | 39 | G1/2″ | 180 | 900*650*850 |
| 10 | 145 | 0.9 | 32 | ||||||
| 13 | 189 | 0.7 | 25 | ||||||
| BG15APM | 11 | 15 | 8 | 116 | 1.7 | 60 | G3/4″ | 300 | 1000*740*1100 |
| 10 | 145 | 1.6 | 57 | ||||||
| 13 | 189 | 1.0 | 35 | ||||||
| BG20APM | 15 | 20 | 8 | 116 | 2.3 | 81 | G3/4″ | 320 | 1000*740*1100 |
| 10 | 145 | 2.0 | 71 | ||||||
| 13 | 189 | 1.6 | 57 | ||||||
| BG30APM | 22 | 30 | 8 | 116 | 3.4 | 120 | G1″ | 420 | 1070*840*1260 |
| 10 | 145 | 3.2 | 113 | ||||||
| 13 | 189 | 2.7 | 95 | ||||||
| BG40APM | 30 | 40 | 8 | 116 | 5.0 | 177 | G1″ | 450 | 1070*840*1260 |
| 10 | 145 | 4.0 | 141 | ||||||
| 13 | 189 | 3.1 | 109 | ||||||
| BG50APM | 37 | 50 | 8 | 116 | 6.4 | 226 | G1-1/2″ | 600 | 1200*1000*1390 |
| 10 | 145 | 5.4 | 191 | ||||||
| 13 | 189 | 4.7 | 166 | ||||||
| BG60APM | 45 | 60 | 8 | 116 | 7.2 | 254 | G1-1/2″ | 700 | 1200*1000*1390 |
| 10 | 145 | 6.6 | 233 | ||||||
| 13 | 189 | 5.7 | 201 | ||||||
| BG75APM | 55 | 75 | 8 | 116 | 9.4 | 332 | G2″ | 920 | 1700*1200*1550 |
| 10 | 145 | 8.2 | 290 | ||||||
| 13 | 189 | 6.7 | 237 | ||||||
| BG100APM | 75 | 100 | 8 | 116 | 12.2 | 431 | G2″ | 950 | 1700*1200*1550 |
| 10 | 145 | 10.8 | 381 | ||||||
| 13 | 189 | 9.1 | 321 | ||||||
| BG125APM | 90 | 125 | 8 | 116 | 15.2 | 537 | G2″ | 1350 | 2100*1300*1650 |
| 10 | 145 | 13.3 | 470 | ||||||
| 13 | 189 | 11.4 | 403 | ||||||
| BG150APM | 110 | 150 | 8 | 116 | 19.9 | 703 | DN80 | 2650 | 2500*1650*1900 |
| 10 | 145 | 16.3 | 576 | ||||||
| 13 | 189 | 14.5 | 512 | ||||||
| BG180APM | 132 | 180 | 8 | 116 | 23.0 | 812 | DN80 | 2850 | 2500*1650*1900 |
| 10 | 145 | 19.7 | 696 | ||||||
| 13 | 189 | 16.0 | 565 | ||||||
| BG220APM | 160 | 220 | 8 | 116 | 27.0 | 954 | DN80 | 4100 | 3000*1900*1950 |
| 10 | 145 | 22.5 | 795 | ||||||
| 13 | 189 | 21.0 | 742 | ||||||
| BG250APM | 185 | 250 | 8 | 116 | 30.0 | 1059 | DN80 | 4300 | 3000*1900*1950 |
| 10 | 145 | 27.0 | 954 | ||||||
| 13 | 189 | 23.0 | 812 | ||||||
| BG270APM | 200 | 270 | 8 | 116 | 32.5 | 1148 | DN100 | 5300 | 3600*2200*2200 |
| 10 | 145 | 29.2 | 1031 | ||||||
| 13 | 189 | 25.5 | 901 | ||||||
| BG300APM | 220 | 300 | 8 | 116 | 38.0 | 1342 | DN100 | 5500 | 3600*2200*2200 |
| 10 | 145 | 32.0 | 1130 | ||||||
| 13 | 189 | 28.8 | 1017 | ||||||
| BG340APM | 250 | 340 | 8 | 116 | 43.0 | 1519 | DN100 | 5800 | 3600*2200*2200 |
| 10 | 145 | 37.5 | 1324 | ||||||
| 13 | 189 | 31.5 | 1112 | ||||||
Company Profile
Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.
Wallboge’ s primary businesses focus in following key areas:
Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump
At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe.
CHINAMFG continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.
Certifications
Exhibitions
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
Our Advantages
1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.
FAQ
Q1: Are you a factory or a trading company?
A1: We are a factory. Please check our Company Profile.
Q2: What is the exact address of your factory?
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China
Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.
Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.
Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.
Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.
Q7: What is your MOQ requirement?
A7: 1 unit.
Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Engineers Available to Overseas Service. |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-05-08
China manufacturer Focus Wholesale Diesel Air Compressor Screw Used for Sale air compressor lowes
Product Description
Product Description
Introducing the CHINAMFG Used Screw Type Air Compressor 29-23, a reliable and efficient solution for all your drilling needs. Designed for drilling rigs and machines, this compressor guarantees optimal performance and durability. With its high-quality construction, it ensures seamless operation even in the most demanding drilling environments. The CHINAMFG Screw Air Compressor29-23 is a trusted choice for professionals in the industry. Don’t miss the opportunity to own this exceptional compressor. Purchase the CHINAMFG Screw Air Compressor 29-23 today and experience unmatched productivity and reliability.
Other Product
If you are interested in other products, please click on the product name or picture to view more information
Water Well Drilling Rig
Drill Truck
Core Drilling Rig
Air compressor
Company Profile
Wanhai Machinery Co., Ltd., situated in HangZhou, ZheJiang , is a reputable manufacturer specializing in the design, development, production, and distribution of top-notch drilling machinery and equipment. Our extensive product range encompasses a variety of drilling rigs, including oil and gas drilling rigs, water well drilling rigs, core drilling rigs, and more, catering to diverse drilling tasks and scenarios. Our unwavering commitment lies in delivering exceptional products and services that are tailored to meet the specific requirements of each customer. We take pride in our dedicated after-sales team, who promptly and effectively address any concerns or issues that may arise, ensuring utmost customer satisfaction.
We eagerly anticipate establishing enduring, reliable, and mutually beneficial relationships with every customer we serve. Should you express interest in our products, please do not hesitate to reach out to us. We assure you that our team will provide you with the necessary information and assistance to make an informed decision.
At Wanhai Machinery Co., Ltd., we prioritize quality and innovation in all aspects of our operations. Our state-of-the-art manufacturing facilities, coupled with our team of experienced professionals, enable us to consistently deliver drilling machinery and equipment of the highest standards. We stay abreast of the latest technological advancements in the industry, ensuring that our products are at the forefront of efficiency and performance. Furthermore, we understand that each drilling project comes with its unique set of challenges and requirements. Therefore, we offer customized solutions to cater to the specific needs of our customers.
Foreign customer
FAQ
1. Are you a trading company or a manufacturer?
We are a professional manufacturer. Our factory mainly produces water well drilling rigs, core drilling rigs, down-the-hole drilling rigs, pile drivers, etc. The products have been exported to hundreds of countries around the world and enjoy a high reputation all over the world.
2.How to inspect the goods?
1) Support customers to come to the factory for on-site inspection.
2) Support customers to designate third-party companies to inspect goods.
3) Support video inspection.
3.How long is your delivery cycle?
1) In the case of stock, we can deliver the machine within 7 days.
2) Under standard production, we can deliver the machine within 15-20 days.
3) In the case of customization, we can deliver the machine within 25-30 days.
4. What’s your terms of payment?
T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Technical Services |
|---|---|
| Warranty: | Online Technical Services |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-05-07
China high quality 7~12bar CHINAMFG Portable Movable CHINAMFG Screw Air Compressor arb air compressor
Product Description
7~12bar CHINAMFG Portable Movable Air Compressor CHINAMFG CHINAMFG CHINAMFG Air Delivery 1~5m3/Min
The new 8 Series compressor range from CHINAMFG is the result of over a decade of continuous development. For the first time, it’s possible to transport behind a normal passenger car, with no special driving license, a compressor that can produce up to 5m3 of air, with a full size fuel tank, aftercooler and generator all incorporated into a compact and lightweight package.
This is all made possible by the latest development in our pioneering air element design, meaning we can produce a compressor up to 150kg lighter than comparable models. However, we understand that, this means nothing without efficiency. Efficiency can mean many things, such as: reduced service time, fuel consumption or increased utilization. The 8 Series ticks all the boxes when it comes to delivering outstanding performance in all of these categories.
Lastly, depending on your application you might ask about robustness, durability,
ruggedness or toughness – we have 1 simple word for all of the above – The HardHat . This legendary canopy was born in 2005 and the 8 Series features the latest, toughest design.
The amazing new 8 Series from Atlas Copco, it’s all about the numbers, it’s all about changing the game and we have one clear challenge to you – what do you tow?
| Technical Data | ||||||
| Performance | XAS 88KD | XAS 98KD | XAS 48KDG | XAS 68KDG | XAS 98KDG | |
| Free air delivery | m²/min | 5 | 5.3 | 2.5 | 3.5 | 5.3 |
| Working pressure | bar | 7 | 7 | 7 | 10.3 | 7 |
| Emission valve | No/size | 3*3/4″ | 3*3/4″ | 3*3/4″ | 3*3/4″ | 3*3/4″ |
| electric power | kVA | 6(12.5) | 6(12.5) | 9 | ||
| air compressor oil tank | L | 8 | 9 | 8 | 8 | 9 |
| Max.ambient temperature at sea level | C | 50 | 50 | 50 | 50 | 50 |
| Min.starting temperature | C | -10/-20 | -10/-20 | -10/-20 | -10/-20 | -10/-20 |
| Noise level | dB(A) | 101 | 101 | 101 | 101 | 101 |
| Engine | ||||||
| Brand | Kubota | Kubota | Kubota | Kubota | Kubota | |
| Model | V 1505 T | V1505 T | V 1505(T) | V1505 T | V 1505 T | |
| Cylinder no. | 4 | 4 | 4 | 4 | 4 | |
| Power | kW | 33 | 33 | 26.5(33) | 33 | 33 |
| Full load | rpm | 3000 | 3000 | 3000 | 3000 | 3000 |
| unload | rpm | 1850 | 1850 | 1850 | 1850 | 1850 |
| engine oil tank capacity | L | 5.5 | 5.5 | 5.5 | 5.5 | 5.5 |
| cooler tank capacity | L | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 |
| fuel tank capacity | L | 60 | 60 | 60 | 60 | 60 |
| Dimension | ||||||
| Length | mm | 2290 | 2290 | 2290 | 2290 | 2290 |
| Width | mm | 1350 | 1350 | 1350 | 1350 | 1350 |
| Height | mm | 1400 | 1400 | 1400 | 1400 | 1400 |
| Weight | kg | <750 | <750 | <750 | <750 | <750 |
More CHINAMFG air compressor:
| XAS | XAS37, XAS47, XAS57, XAS67, XAS97,XAS137, XAS58kd, XAS68kd, XAS78kd, XAS88, XAS88kd, XAS57E, XAS77E, XAS486E, XAS186C, |
| XAH | XAH107, |
| XAHS | XAHS37, XAHS38kd, XAHS710E, XAHS650E, XAHS376E, XAHS930E, XAHS950, XAHS166C, XAHS710cd, |
| XATS | XATS67, XATS68kd, XATS1200, XATS1050, XATS156C, XATS800cd, |
| XAMS | XAMS850E, XAMS800E, XAMS466E, XAMS1150, XAMS850cd, |
| XAVS | XAVS650E, XAVS550E, XAVS306E, XAVS336E, XAVS900, XAVS206C, XAVS236C, XAVS650cd, |
| XAXS | XAXS600E, XAXS600C, XAXS600cd, |
| XRS | XRS846, |
| XRHS | XRHS1150E, XRHS1150, XRHS836, XRHS666C, XRHS666cd, |
| XRVS | XRVS960E, XRVS1050, XRVS1275, XRVS1000, XRVS716, |
| XRXS | XRXS1210, |
| XRYS | XRYS1150, |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Best |
|---|---|
| Warranty: | 2 Year |
| Principle: | Rotary Compressor |
| Application: | Intermediate Back Pressure Type, High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Mute: | Mute |
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-05-06