Product Description
Introduction of Diesel Air Compressor Screw Air Compressor Industrial Air Compressor Machines Price
Feature 1: Environmental protection Accurate analysis of the internal airflow of the machine and proper use of the muffler board. The assembly of each component is controlled during the final assembly process to ensure low noise during operation. Even if the machine is placed near the work site or office, it will not cause uncomfortable reactions to the human body.Feature 2: Easy maintenance zmjt055Reasonable layout, humanized design, mature models. Whether it’s routine maintenance or troubleshooting, it’s easy to navigate.Feature three:When the rated pressure set by the machine is reached, the compressor is unloaded. When the system pressure is lower than the set value, the machine will immediately reload, and according to the actual gas consumption, intelligently select the appropriate automatic stop time after unloading to save energy, and ensure that when the system pressure is lower than the set value after shutdown The machine restarts immediately. Do not start up to more than hourly. The screw main unit sucks air in the low temperature zone to improve compression efficiency and reduce energy consumption.The product has been exported to the United States, France, Canada, Indonesia, Russia, Vietnam, Australia, South Korea, Iran and other countries, and has won unanimous praise from customers.zmwm02
Parameter of Diesel Air Compressor Screw Air Compressor Industrial Air Compressor Machines Price
| Model | Exhaust pressure (Mpa) |
Exhaust volume (m³/min) |
Power (kw) |
Noise (db) |
Weight (kg) |
Dimension (mm) |
Frequency converter weight(kg) |
Frequency converter size(mm) |
| BK7.5-8G | 0.8 | 1.2 | 7.5 | 72 | 200 | 800*620*800 | 200 | 800*620*800 |
| BK7.5-8 | 0.8 | 1.2 | 720*700*1000 | 200 | ||||
| BK7.5-10 | 1 | 1 | 200 | |||||
| BK7.5-13 | 1.3 | 0.8 | 200 | |||||
| BK11-8G | 0.8 | 1.7 | 11 | 72 | 300 | 1000*760*1090 | 300 | 1000*780*1090 |
| BK11-8 | 0.8 | 1.7 | 290 | 700*670*1250 | 300 | 805*720*1250 | ||
| BK11-10 | 1 | 1.5 | 300 | |||||
| BK11-13 | 1.3 | 1.2 | 300 | |||||
| BK15G | 0.8 | 2.4 | 15 | 73 | 280 | 1000*670*1090 | 300 | 1000*780*1090 |
| BK15-8 | 0.8 | 2.4 | 290 | 700*670*1250 | 300 | 805*720*1250 | ||
| BK15-10 | 1 | 2.2 | 300 | |||||
| BK15-13 | 1.3 | 1.7 | 300 | |||||
| BK18-8 | 0.8 | 3 | 18.5 | 74 | 500 | 1080*880*1235 | 560 | 1080*970*1235 |
| BK18-10 | 1 | 2.7 | 560 | |||||
| BK18-13 | 1.3 | 2.3 | 560 | |||||
| BK22-8G | 0.8 | 3.6 | 22 | 74 | 380 | 1200*800*1100 | 390 | 1200*800*1100 |
| BK22-8 | 0.8 | 3.6 | 540 | 1080*880*1235 | 600 | 1080*970*1235 | ||
| BK22-10 | 1 | 3.2 | 600 | |||||
| BK22-13 | 1.3 | 2.7 | 600 | |||||
| BK30-8 | 0.8 | 5 | 30 | 75 | 650 | 1120*930*1290 | 740 | 1120*1571*1290 |
| BK30-10 | 1 | 4.4 | 740 | |||||
| BK30-13 | 1.3 | 3.6 | 740 | |||||
| BK37-8G | 0.8 | 6 | 37 | 76 | 570 | 1340*850*1310 | 820 | 1340*850*1310 |
| BK37-8 | 0.8 | 6 | 730 | 1240*1030*1435 | 690 | 1240*1070*1435 | ||
| BK37-10 | 1 | 5.5 | 690 | |||||
| BK37-13 | 1.3 | 4.6 | 690 | |||||
| BK45-8G | 0.8 | 7.1 | 45 | 78 | 800 | 1480*1030*1345 | 1030 | 1480*1030*1345 |
| BK45-8 | 0.8 | 7.1 | 820 | 1240*1030*1595 | 880 | 1240*1095*1595 | ||
| BK45-10 | 1 | 6.5 | 880 | |||||
| BK45-13 | 1.3 | 5.6 | 880 | |||||
| BK55-8G | 0.8 | 10 | 55 | 80 | 800 | 1480*1030*1345 | 810 | 1480*1030*1345 |
| BK55-8 | 0.8 | 9.5 | 1200 | 1545*1200*1470 | 1270 | 1845*1200*1465 | ||
| BK55-10 | 1 | 8.5 | 1270 | |||||
| BK55-13 | 1.3 | 7.4 | 1270 | |||||
| BK75-8 | 0.8 | 13 | 75 | 81 | 1470 | 1800*1190*1710 | 1470 | 1800*1190*1710 |
| BK90-8 | 0.8 | 16 | 90 | 81 | 1520 | 1600 | ||
| BK110&WH-8 | 0.8 | 21 | 110 | 82 | 2000 | 2100*1230*1730 | 2150 | 2600*1310*1800 |
| BK110-8 | 0.8 | 21 | 2150 | |||||
| BK132&WH-8 | 0.8 | 24 | 132 | 82 | 2100 | 2270 | ||
| BK132-8 | 0.8 | 24 | 2270 |
Pictures of Diesel Air Compressor Screw Air Compressor Industrial Air Compressor Machines Price
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What is the impact of altitude on air compressor performance?
The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:
1. Decreased Air Density:
As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.
2. Reduced Airflow:
The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.
3. Decreased Power Output:
Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.
4. Extended Compression Cycle:
At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.
5. Pressure Adjustments:
When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.
6. Compressor Design:
Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.
7. Maintenance Considerations:
Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.
When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-04-13
China supplier Professional Manufacturer Wholesale Price Silent Oil Free Air Compressor for Oxygen Concentrator small air compressor
Product Description
Product Description
OIL FREE OILLESS HIGH PRESSURE RECIPROCATING COMPRESSOR ,
ADVANTAGE:
1.TOTALLY 100% OIL FREE,NO NEED OIL
2.SUITABLE FOR OXYGEN,HYDROGEN,NITROGEN,HELIUM,ARGON,CNG AND SPECIAL GAS
3.NO POLLUTION ,KEEP SAME PURITY TO INLET GAS
4.RELIABLE AND TOP QUALITY,COMPARABLE WITH USA RIX BRAND.
5.TOP COST PERFORMANCE,LOW MAINTENANCE COST AND EASY TO BE OPERATIONAL, ONLY NEED TO BE CHANGE PISTON RING
6.4000 HOURS PISTON RING WORKING LIFE,1500-200O HOURS WORKING LIFE FOR FINAL STAGE RING
7.TOP BRAND MOTOR,AND CAN BE SPECIAL POINTED ,LIKE SIMENSE BRAND
8.SUPPLY JAPAN MARKET,QUALITY APPROVAL BY JAPAN STRICKLY SYSTEM
9.CE APPROVAL
All our models can be customized. For more information, pleaes do not hesitate to contact.
FAQ
Q1: Can I get samples from your factory?
A: Due our compressor is high value machine ,we do not provide free sample for the customer
Q2: If products have some quality problem, how would you deal with?
A: our equipment is high quality design,few equipment has problem, in case of quality happened in the Guarantee time,we will provide parts to customer for free ,we customer can replace it by our internet technical instruction or by video instruction
Q3. Our delivery date
A:Generally, 3-10days
Q4. What is the standard of package?
A:Export plywood packing ,attached pictures
Q5. Do you accept OEM business?
A:Yes, we accept OEM business
Q6. what kind of certificate you have ?
A:We have ISO9001, CE approval
Q7.How to maintain and repair
A:Our compressors have operation and maintenance instructions, as well as maintenance and repair videos. Customers can follow the maintenance video operation and replace the accessories. If you are not sure, you can contact our online customer service staff.
Q8.Our warranty
A:For the main components of the compressor, we provide a 12-month warranty period after shipment.If the main parts are damaged under normal use, we will send you an international express to us free of charge, and the customer will complete the installation and maintenance under our guidance.The main components include: motor, crankcase, cylinder, crankshaft, connecting rod, piston, fan, bearing and other major components. Among them, wearing parts, various sealing rings, guiding rings are not included.
Q9. What is the location of your factory?
A:Our factory is located in the HangZhou city ZheJiang Province, China.take 4hours by high speed train From ZheJiang ,there is 1 round flight per day from ZheJiang to HangZhou city
Q10. How to solve quality problems?
A:If the compressor met quality problems ,customer will find the faulty reason by our technical person instruction ,and we offer resolution ,in the quality guarantee time ,the parts are free ,if out of warranty date ,we will charge the cost the most problems we meet is how to do maintenance for the compressor ,and normally ,for the compressor we need to replace piston ring ,guide ring ,and valve etcs ,we have compressor maintenance video to teach customer how to do it ,and customer should watch it before do the maintenance ,and also can consult our technical service person Also ,we welcome customer dispatch labor to our factory to get professional compressor repair and maintenance training.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Compress Level: | Multistage |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-10-25